Dynamics of the D(+) + H2 → HD + H(+) reaction at the low energy regime by means of a statistical quantum method.

نویسندگان

  • Tomás González-Lezana
  • Pascal Honvault
  • Yohann Scribano
چکیده

The D(+) +H2(v = 0, j = 0, 1) → HD+H(+) reaction has been investigated at the low energy regime by means of a statistical quantum mechanical (SQM) method. Reaction probabilities and integral cross sections (ICSs) between a collisional energy of 10(-4) eV and 0.1 eV have been calculated and compared with previously reported results of a time independent quantum mechanical (TIQM) approach. The TIQM results exhibit a dense profile with numerous narrow resonances down to Ec ~ 10(-2) eV and for the case of H2(v = 0, j = 0) a prominent peak is found at ~2.5 × 10(-4) eV. The analysis at the state-to-state level reveals that this feature is originated in those processes which yield the formation of rotationally excited HD(v' = 0, j' > 0). The statistical predictions reproduce reasonably well the overall behaviour of the TIQM ICSs at the larger energy range (Ec ≥ 10(-3) eV). Thermal rate constants are in qualitative agreement for the whole range of temperatures investigated in this work, 10-100 K, although the SQM values remain above the TIQM results for both initial H2 rotational states, j = 0 and 1. The enlargement of the asymptotic region for the statistical approach is crucial for a proper description at low energies. In particular, we find that the SQM method leads to rate coefficients in terms of the energy in perfect agreement with previously reported measurements if the maximum distance at which the calculation is performed increases noticeably with respect to the value employed to reproduce the TIQM results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum dynamics study of isotope effect for H¿CH4 reaction using the SVRT model

The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H1CH4→H21CH3 using time-dependent wave-packet method. The reaction probabilities for producing H2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abs...

متن کامل

A detailed quantum mechanical and quasiclassical trajectory study on the dynamics of the H+ + H2 --> H2 + H+ exchange reaction.

The H+ + H2 exchange reaction has been studied theoretically by means of a different variety of methods as an exact time independent quantum mechanical, approximate quantum wave packet, statistical quantum, and quasiclassical trajectory approaches. Total and state-to-state reaction probabilities in terms of the collision energy for different values of the total angular momentum obtained with th...

متن کامل

Quantum approaches for the insertion dynamics of the H+ + D2 and D+ + H2 reactive collisions.

The H(+)+D(2) and D(+)+H(2) reactive collisions are studied using a recently proposed adiabatic potential energy surface of spectroscopic accuracy. The dynamics is studied using an exact wave packet method on the adiabatic surface at energies below the curve crossing occurring at approximately 1.5 eV above the threshold. It is found that the reaction is very well described by a statistical quan...

متن کامل

Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches.

The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) c...

متن کامل

Theoretical Study on the Kinetics of the Reaction of C2H with C2H2

In this theoretical research, the mechanism of the C2H + C2H2 reaction is studied by high-level quantum-chemical methods and kinetics of the reaction is investigated by statistical rate theories. High-level electronic structure calculation methods including M06-2X, CCSD(T), CBS-Q and G4 methods are employed to explore the doublet potential energy surface of the reaction and compute the molecula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 5  شماره 

صفحات  -

تاریخ انتشار 2013